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New infrastructure and analysis methods that leverage 
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How Free Electron Lasers Work



Linac Coherent Light Source 
Challenges



Each workflow with different throughput and compute needs; need flexible development cycle

Linac Coherent Light Source:  20+ Experimental Techniques with 
Unique Workflows

Coherent Scattering Nanocrystallography Resonant Inelastic Scattering

Coherent ImagingCoincidence Spectroscopy Nonlinear Spectroscopy
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2022:  20 GB/s, 4 TF (reduction), 34 TF (analysis) 
2026:  80 GB/s, 34 TF (reduction), 270 TF (analysis)

2023:  64 GB/s, 3 TF (reduction), 4 TF (analysis) 
2026:  1.2 TB/s, 16 TF (reduction), 20 TF (analysis)

2021:  200 GB/s, <1TF (reduction), <1TF (analysis) 2022:  64 GB/s, 3 TF (reduction), 270 TF (analysis) 
2026:  1.2 TB/s, 16 TF (reduction), 1340 TF (analysis)

XPCS XSVS
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2023:  20 GB/s, 4 TF (reduction), 1 TF (analysis) 
2026:  200 GB/s, 40 TF (reduction), 2 TF (analysis)

2023:  20 GB/s, 3 TF (reduction), <1 TF (analysis)
2026:  80 GB/s, 16 TF (reduction), <1 TF (analysis)



LCLS-II Upgrade: greater data velocity, volume, and complexity

Challenge:  High Throughput, Large Data Volume

Data Rates:
120 Hz to 1 MHz (10000x)

Raw Data Rates:
2 GB/s to 200 GB/s (100x)

Recorded Data Rates:
2 GB/s to 20 GB/s (10x)

Recorded Data Volumes:
~1 PB per 12 hour shift 
5 - 10 PB per 5 day experiment
50 - 100 PB per year aggregated for the 
facility, and growing.

LCLS Data Throughput

250 GB/s
Detector Output

Processed Data



Strategy: maintaining critical capabilities at SLAC to cover majority experiments and for fast 
feedback while surging highest demand experiment to NERSC/LCF

Challenge: Why we need High End Computing

Surge to offsite (NERSC & LCF)

Local resources

Computational Requirements:
80% ~1 PF, 20% ~1 ExaFLOP 



LCLS Data System, a scalable, adaptable system
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Mix of automatic, on-demand, and user driven data flows - combination of onsite and offsite 
resources

Data Reduction 
Pipeline

Online 
Monitoring

Up to 1 TB/s
Fast 

Feedback 
Storage

Detector

Offline 
Storage

Petascale
HPC

Fast
Feedback

~ 1 s ~ 1 min

> 10x Up to 100 GB/s

Offline 
Storage

Exascale
HPC

On-site – Petascale experiments

Off-site – Highest demand experiments 
(NERSC, LCF)Onsite

ESnet



One workflow must encompass several areas and disciplines:  integrated approach required

Example of  Massive Throughput Workflow:  Coherent Imaging

Accelerator 
Diagnostics

Machine Learning 
Optimization

X-ray Images

High Frame 
Rate Detector

Assess Data Quality 
from Integrated Data

Interpretation of 
Structural Dynamics

High End 
Computing

Instant Data 
Reduction

Edge 
Computing

Local Fast-feedback 
Computing



Produce actionable information with low latency for 
fast feedback and experiment steering

Data Reduction at the Edge



MRCO reconstructs attosecond pulses using ML at the Edge

Fast ML at the Edge:  Data Reduction for attosecond streaking

● Deploy AI inference in FPGAs:  developed 

an AI inference library in High-Level 

Synthesis using SLAC Neural Net Library; 
enables high rate data processing & low 

latency feedback
● Implemented CookieNet feature extraction 

to reconstruct time-energy distribution of 
an attosecond FEL pulse in real-time  to 

reduce 100 GB/s →~1 GB/s
● Implemented in FPGA used in LCLS Data 

Reduction Pipeline

● Demonstrated training and inference on 
Graphcore and SambaNova

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office 

of Basic Energy Sciences under Award Number FWP-100643 and  FWP-35896.  

Gain insight into attosecond electron dynamics:

● MRCO/Cookiebox:  Angle-resolved Electron Spectroscopy determines 
photoelectron angular distributions during photochemical processes

MRCO/Cookiebox



Goal:  Provide a set of libraries to synthesize AI inference networks into FPGAs

ML in FPGA:  SLAC Neural Network Library (SNL) Framework

SNL implementation is targeting scientific instruments (frame rate of 100 kHz to 1 MHz) which must 

continuously adapt to new data and changing environments. 

● Targeted at networks of a medium size, 10 - 20 layers,  100,000s of trainable parameters, 
● Dynamic reloading of weights and biases to avoid re-synthesis.

○ Cannot re-synthesize for new training set; cannot risk FPGA implementation failing due to 
increase in resource usage , timing failure, or change to internal interconnect structure.  

● High speed training is needed to support this as are real time bias and weight updates.

Features:

● Supports a Keras-like API for layer definition and configuration, modular and extensible
● Currently supported layer types:  Conv2D, MaxPooling, AveragePooling, Dense, Reservoir.

● Current activators:  LeakyRelu, Relu

To Do: Quantization, attention layers for transformers (foundation models), global optimization 
suggestions



Detectors with sparsified readout at ASIC enable leap from 100 kHz detector rates  to 1 MHz

Smart Sensors:  SparkPix-S and SparkPix-RT

SparkPix-S:  Pixel-threshold
● Information in both XPCS and XSVS experiments 

is “sparse” and confined in a limited # of 
pixels/frame, each pixel containing a limited # of 

photons 

● 2D detector with fine spatial resolution, 
operating at the full rate of the machine, and 

discriminating between 0, 1, 2, 3…. 
photons/pixel/frame with high QE

SparkPix-RT
● Solve data transmission bottleneck by implementing 

compression algorithm solutions in ASIC
● bit-level compression
● auto-correction techniques (pedestal)

● R&D needed to  deal with calibration and segmentation

1 ph

2 ph

3 ph

4 ph
5 ph



Lower the barrier to doing science through a unified 
approach from sensors to the data center

Better Science through ML



Use ML to analyze data at the rate the production (1 MHz)

Figures:  Greg Stewart at SLAC

More good information, faster → better decisions → better data → experiment success!

Analyze data at the rate of production using ML and providing access to network and compute

● Introduce AI/ML feature extraction at the edge to produce actionable information to feed 

experiment steering decision making mechanisms.
● AI-assisted decision making (running offline) uses analyzed information and other inputs to 

steer experiment.

● Embrace the use of heterogeneous pipelines (FPGA, CPU, GPU) and make them flexible, 
resilient, and transparent to use and configure



Provide actionable information by developing on-the-fly inference at the edge using ML 
trained remotely on streamed data - rapid (re)training workflows

Connect scientific instruments and HPC to create smart instruments

AI/ML at the Edge can  introduce new, compute-intensive workflows, such as those required to re-train a model on 

streaming experimental data.  Experiment conditions can change within 1000 seconds, so rapid re-training necessary.

This material is based on  work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number FWP-100643. 

Model training on local 
GPU: 1102 seconds

7 seconds

7 + 19 + 5 = 31 s

19 sec

5 seconds



1st generation DRP: Veto for Crystallography and Single Particle Imaging 

LCLS Beam

● Individual nanocrystals are injected 
into the focused LCLS pulses

● Diffraction patterns are collected 
on a pulse-by-pulse basis

● One exposure per crystal
● Each image processed 

independently
● Crystal concentration dictates “hit” 

rate

Experiment Description
X-ray 

diffraction
image

Interpretation of 
system structure / 

dynamics

Data Reduction
• Remove”no hits”
• >10x reduction

3 TFlops
16 TFlops

1 TB/s 100 GB/s

Intensity map 
from multiple 

pulses

60 GB/s 6 GB/s

● 4 MP@5 kHz
in 2024

● 16 MP@40kHz 
in 2028

Data Analysis
• Bragg peak finding
• Index / orient patterns 
• Average
• 3D intensity map
• Reconstruction

4 PFlops
20 PFlops

Liquid jet

Detector

Megapixel 
Detector

Next generation DRP:  write peaks

PeakNet
autocorrection,

calibration
Indexing, averaging, 3D intensity 

map, reconstruction



PeakNet: A 1 MHz AI-based Autonomous Bragg Peak Finder 
Significance and Impact
● Use PeakNet in Data Reduction Pipeline to write peaks 

instead of raw images to disk.
● PeakNet is a deep neural network for

○ Autonomous Bragg peak detection in real-time
○ Adapts in real-time to shot-to-shot background 

changes without manual tuning

Features
● Autonomously executes pixel segmentation into 1) 

Bragg peaks, 2) artifact scattering, and 3) 
background, requiring no user parameter tuning.

● Our model, based on an attention U-Net architecture, 
minimizes focal loss during segmentation, accurately 
identifying true Bragg peaks and filtering out false 
peaks from artifact scattering, all without manual 
masking.

PeakNet: A neural network for autonomous Bragg peak detection 
in real-time serial crystallography eliminates manual tuning, adapts 
in real-time to shot-to-shot background changes, and offers fast 
processing for high data rates. 

A modular PeakNet under development
Transitioning to a "RegNet + BiFPN + Segmentation head" 
architecture.  
RegNet offers flexible pre-trained backbone options (e.g., 
ResNet, MobileNet), with BiFPN enabling multi-scale 
feature fusion, aiding segmentation across different scales.

Wang, C. et al., 2023 (https://doi.org/10.48550/arXiv.2303.15301)
This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office 
of Basic Energy Sciences under Award Number FWP-100643.



SpeckleNN: AI classification of SPI images at high data rates 

SpeckleNN measures speckle pattern similarities by training a 
model using a contrastive approach where three samples are used at 
a time. It learns to associate identically labeled (anchor and positive) 
images together and dissociate differently labeled (anchor and 
negative) images.

Significance and Impact
● Real-time data vetoing potentially reducing raw 

data volume and disk storage by 95%.
● Classification of single-hit diffraction patterns 

for single particle imaging with limited labeled 
examples

● Overcomes high rate performance bottleneck: 
the need for speckle pattern labeling by a 
human for training.

Features
● Our model allows a flexible selection of 

vision backbones. A LeNet-like compact 
backbone (64K parameters) also delivers 
good performance (94% accuracy, 92% F1 
score in predicting single-hit). Its small size 
makes it particularly amenable to 
deployment on FPGA devices.

● Our model maintains high performance even 
with only a fraction of an image available.Wang, C. et al., 2023 (https://doi.org/10.48550/arXiv.2302.06895)

This material is based upon work supported by the U.S. Department of Energy, Office of Science, 
Office of Basic Energy Sciences under Award Number FWP-100643.



Actionable information produced at each layer of 
computing feeds decision-making algorithms that can drive 
experiments over seconds, minutes, or hours

Experiment Steering



Machine learning enabled real-time experiment steering

Chen, Z. et al., 2023 (https://doi.org/10.48550/arXiv.2306.02015)
This material is based upon work supported by the U.S. Department of Energy, 
Office of Science, Office of Basic Energy Sciences under Award Number DE-
SC0022216.

● Help users make physics-informed 
decisions during their beam time.

● A combination of neural network 
and Bayesian optimal design for 
real-time decision making and 
parameter estimation.

● Neural networks are used as 
surrogate models for rapid 
calculations of utility function and 
posterior distribution.

● Application is simulated split-and-
delay measurement in LCLS:  a 
data-driven experiment steering 
framework suggests next 
measurement point, time delay t, 
that maximizes information gain

More good information, faster → better decisions → better data → experiment success!



Advances in computational power and analysis methods that leverage massive data 
quantities will maximize the science output from LCLS.

Summary

LCLS is supporting the development of a data system infrastructure capable of handling the 
demands of Big Science:

● Real-time data analysis capabilities (data reduction,  complex workflow orchestration)

● On-demand utilization of super-computing environments
● Strategic development of  AI/ML for targeted applications

● Ability to automate experiments (execution to analysis)
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